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E-mail: J.Heinrichs@ulg.ac.be

Received 1 February 2006
Published 2 May 2006
Online at stacks.iop.org/JPhysCM/18/4781

Abstract
We study reflection and transmission of waves in a random tight-binding system
with absorption or gain for weak disorder, using a scattering matrix formalism.
Our aim is to discuss analytically the effects of absorption or gain on the
statistics of wave transport. Treating the effects of absorption or gain exactly
in the limit of no disorder allows us to identify short- and long-length regimes
relative to absorption or gain lengths, where the effects of absorption/gain on
statistical properties are essentially different. In the long-length regime, we find
that a weak absorption or a weak gain induce identical statistical corrections
in the inverse localization length, but lead to different corrections in the mean
reflection coefficient. In contrast, a strong absorption or a strong gain strongly
suppress the effect of disorder in identical ways (to leading order), both in the
localization length and in the mean reflection coefficient.

1. Introduction

In this paper we study analytically the coherent reflection and transmission of waves in an
active one-dimensional disordered system which either absorbs or amplifies the waves. Our
model is the familiar single-band tight-binding model with random site energies (Anderson
model) including additional fixed positive or negative imaginary parts describing absorption
or amplification. As is well-known, the introduction of the imaginary potential destroys the
time-reversal symmetry of the system.

The electronic model with absorption may describe annihilation of electrons via
electron–hole recombinations acting as a complex optical potential in a nearly compensated
semiconductor. The amplification model is, of course, meaningless for electrons whose
fermionic character forbids the presence of more than one electron at a given spatial location.

On the other hand, the tight-binding model with absorption or amplification due to
stimulated emission may be appropriate for describing the localization of light waves in active
photonic band-gap crystals, characterized by a periodic variation of the dielectric constant. In
particular, the interplay of the (phase coherent) amplification of light waves with the process
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of coherent scattering by random inhomogeneities leading to localization [1, 2] is of current
interest for random lasers [3].

A considerable amount of theoretical work related to the statistics of the transmittance and
of the reflectance of random systems with absorption or gain has already been published [4–15].
We feel, however, that important aspects of the effects of absorption or gain on the transmission
properties of the random system studied below have not received sufficient attention in previous
work.

We refer, in particular, to the form of the localization length ξ for large lengths L of a
random chain. For weak disorder, this is found to be given by [6, 9]

1

ξ
= 1

lu
+ 1

ξ0
, u = a or g, (1)

where ξ0 is the localization length of the system in the absence of absorption or gain
(amplification), and la and lg are the absorption and gain lengths of a perfect system,
respectively. In the tight-binding model, (1) is expected to be obtained by studying the
transmittance of the disordered sample described by the Schrödinger equation

[E − (εn + iη)]ϕn = ϕn+1 + ϕn−1, n = 1, 2, . . . , N, (2)

where ϕn are the wavefunction amplitudes at sites n = 1, 2, . . . , N , of spacing a, of the
disordered sample of length L = Na. The εn are the random site energies, to which one adds a
fixed non-Hermitian term iη describing absorption for η > 0 and amplification for η < 0. The
energies E , εn and η are in units of a fixed nearest-neighbour hopping energy V . The random
chain is connected at both ends to semi-infinite perfect leads (εn = 0) with η = 0, whose sites
are positioned at n = 0,−1,−2, . . . and n = N + 1, N + 2, . . ., respectively. For the perfect
tight-binding chain with absorption or gain, Datta [12] has derived

lg = la = 1

|η| , (3)

while numerical studies of the random tight-binding model by Gupta, Joshi and Jayannavar [11]
and by Jiang and Soukoulis [13] support equation (1) for small η of either sign, with 1/ξ0 given
by the familiar Thouless expression for weak site-energy disorder. A feature of (1) that is
generally regarded as paradoxical is the fact that for amplification it leads to the suppression of
transmittance for large L, as in the case of absorption. What is more, according to equation (1),
when disorder is present the suppression for amplification occurs at exactly the same rate as
for absorption [9]. This surprising feature has been an important incentive for developing
a more comprehensive analytic treatment of the statistics of wave transport in the presence of
absorption or amplification. Indeed, an important drawback of equation (1) is that it completely
ignores effects of absorption or gain on the statistics of the transmission coefficient from which
1
ξ

is obtained. Our aim is to remedy this defect in the framework of a detailed analysis for weak
disorder of the tight-binding system defined by equation (2).

An important feature of our approach below is an exact treatment of the effect of absorption
or gain, as done previously by Datta [12] for a non-disordered (pure) system. This allows
us to clearly identify and discuss short- and long-length regimes relative to the absorption
(amplification) length in (1).

The study of transmission and reflection in random one-dimensional media with absorption
or gain was initiated, and later pursued actively, using invariant imbedding equations [4–10].
These equations are coupled non-linear differential equations for the reflection and transmission
amplitudes of plane waves incident to the right of a continuous medium occupying the domain
0 � x � L of the x-direction1. As was shown recently [16], the invariant imbedding equations
1 The random potential is assumed to be inhomogeneous in the x-direction only and includes a fixed imaginary part
describing absorption (η > 0) or gain (η < 0).
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follow for weak disorder from the long-wavelength continuum limit of (2) for a disordered
chain embedded in an infinite perfect chain. We recall that the invariant imbedding equations
were originally derived as an exact consequence of the Helmholtz equation for the propagation
of the electric field in a dielectric medium [4, 17]2. For later discussion, we also recall the
important early result for the so-called short-length localization length [4, 5],

1

ξ
= η + 1

ξ0
, (4)

which indicates that, at short lengths, transmittance increases with L for amplification, if
la < ξ0.

The paper is organized as follows. In section 2 we derive exact expressions for the
scattering matrix elements (transmission and reflection amplitudes) in terms of transfer matrices
for the tight-binding equation (1) for weak disorder. In section 3 we discuss our explicit analytic
results for the averaged logarithmic transmission coefficients (localization lengths) in the short-
and long-length regimes. We also discuss the mean logarithmic reflection coefficient for large
lengths. We recall that the distribution of the reflection coefficient is important in the context
of random lasers [7, 8]. Some concluding remarks follow in section 4.

2. Transfer matrix analysis

We start our analysis by rewriting (2) in terms of a transfer matrix for a site n:(
ϕn+1

ϕn

)
= P̂n

(
ϕn

ϕn−1

)
, P̂n =

(
E − εn − iη −1

1 0

)
. (5)

The analogous equation for sites in the perfect leads involves the transfer matrix P̂0 obtained
by letting εn = η = 0 in (5). We wish to study the scattering (reflection and transmission)
of (Bloch) plane wave states of the leads by the disordered segment of length L ≡ N (with
a = 1). For this purpose, it is necessary to perform a similarity transformation of (5) to the
basis of the Bloch wave solutions ϕn ∼ e±ikn for the leads. The eigenvectors of P̂0 are of the
form �u± = ( e±ik

1

)
with eigenvalues e±ik obeying the equation

E = 2 cos k, (6)

which defines the tight-binding energy band. As usual, we choose k positive, 0 � k � π ,
so that, for example, eikn corresponds to a wave propagating from left to right on the lattice
of (2). The similarity transformation of P̂n to the Bloch wave basis is defined by the matrix
Û = (�u+, �u−) and leads to

Q̂n = Û−1 P̂nÛ = Q̂0
n + Q̂1

n, (7)

where

Q̂0
n =

(
(1 − b)eik −be−ik

beik (1 + b)e−ik

)
, Q̂1

n = ibn

(
eik e−ik

−eik −e−ik

)
, (8)

2 In the appendix of [10], a new simple derivation of the invariant imbedding equations from the Helmholtz equation
was presented. This derivation depends on the identification of dy(L , L)/dL (where y(x, L) = ∂

∂x ln E(x, L), with

E(x, L) the electric wavefield) with
(

∂y(x,L)
∂x

)
x=L

at the edge x = L of the layer extending between x = 0 and L .

In [10], this identification was regarded as ‘a basic assumption of the invariant imbedding procedure’. Actually, it
turns out that this is not an assumption at all, since it may be shown, using the exact identity ∂E(x,L)

∂L = a(L)E(x, L),

a(L) = ik0
[
1 + 1

2 η(L)E(L , L)
]
, derived in [4], that

(
∂y(x,L)

∂L

)
x=L

= 0. In conclusion, the derivation of the invariant

imbedding equations in [10] is exact.



4784 J Heinrichs

and

b = η

2 sin k
, bn = εn

2 sin k
. (9)

The transfer matrix of the disordered segment of length N is the product of transfer
matrices associated with the individual sites:

Q̂ =
N∏

n=1

Q̂n . (10)

We now recall the precise relationship between the transfer matrix elements (Q̂)i j ≡ Qi j

and the reflection and transmission amplitudes r+− and t−− and r−+ and t++ for waves incident
at the right and at the left of the disordered system, respectively. The reflection and transmission
amplitudes define the scattering matrix Ŝ, which expresses outgoing wave amplitudes at the left
(O) and at the right (O ′) of the disordered segment in terms of ingoing ones, (I ) and (I ′) [18]:(

O
O ′

)
=

(
r−+ t−−
t++ r+−

) (
I
I ′

)
. (11)

The transfer matrix Q̂, on the other hand, gives the Bloch wave amplitudes at the right end of
the disordered section in terms of the amplitudes at the left end:(

O ′
I ′

)
= Q̂

(
I
O

)
, (12)

whose transformation to a form analogous to (11) yields:(
O
O ′

)
= 1

Q22

( −Q21 1
det Q̂ Q12

) (
I
I ′

)
, (13)

which leads to the desired expressions of transmission and reflection amplitudes in terms of the
transfer matrix elements Qi j = (Q̂)i j :

t−− = 1

Q22
, t++ =

(
det Q̂

)
t−−, (14)

r+− = Q12

Q22
, r−+ = − Q21

Q22
. (15)

From (10), it follows that the determinant of Q̂ is the product of the determinants of the exact
transfer matrices Q̂n associated with the individual sites n of the disordered segment of N sites,
of lengths Na. Now, from (7) to (8), we find that det Q̂n = 1, n = 1, 2, . . . , N , so that

det Q̂ = 1. (16)

From (14), it then follows that

t++ = t−− ≡ t = 1

Q22
, (17)

for any realization of the disorder and for any strength of the imaginary potential.
As usual, we assume that the random site energies are identically distributed independent

Gaussian variables with mean zero and correlation

〈εnεm〉 = ε2
0δm,n . (18)

For weak disorder, we shall expand the matrix functional Q̂ to linear order in the random site
energies. We note that, since the energies of neighboring sites are uncorrelated (equation (18)),
the second-order terms in the expansion of (10) may be omitted, since they will not contribute
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to averages over the disorder at the order ε2
0. Thus, restricting to first order in the expansion

of (10), we obtain [18]

Q̂ =
(

Q̂0
n

)N +
N∑

m=1

(
Q̂0

n

)m−1
Q̂1

m

(
Q̂0

n

)N−m ≡ Q̂0 + Q̂1. (19)

The transfer matrix product (Q̂0
n)

N for the medium in the absence of disorder may readily
be evaluated in closed form. This will allow us to discuss analytically the reflection and
transmission properties of a perfectly amplifying or absorbing system, as done earlier by
Datta [12] using a slightly different procedure. We write(

Q̂0
n

)N = V̂
(

V̂ −1 Q̂0
n V̂

)N
V̂ −1, V̂ = (�v+, �v−), (20)

where V̂ is the diagonalizing matrix formed by the eigenvectors

�v+ =
(

be−ik

(1−b)eik−eiq

1

)
, �v− =

(
be−ik

(1−b)eik −e−iq

1

)
, (21)

(with det V̂ = 2ie−ik

b2 sin q) of Q̂0
n corresponding to eigenvalues eiq and e−iq , respectively. These

eigenvalues are defined in terms of complex functions cos q and sin q by

e±iq = cos q ± i sin q,

cos q = cos k − ib sin k, sin q =
√

1 − cos2 q.
(22)

The explicit expression of
(

Q̂0
n

)m
obtained from (20) to (22) is

(
Q̂0

n

)m =
(

Am Bm

Cm Dm

)
, (23)

where (with e±ik ≡ d±)

Am = 1

sin q
[(1 − b)d+ sin qm − sin q(m − 1)], (24)

Dm = − 1

sin q
[(1 − b)d+ sin qm − sin q(m + 1)], (25)

Bm = −bd−
sin qm

sin q
, (26)

Cm = bd+
sin qm

sin q
. (27)

Note that, as expected, the transfer matrix of the non-disordered system with absorption or gain
defined by (24)–(27) obeys

AN DN − BN CN = cos2 q N + sin2 q N = 1, (28)

and from (15) and (26) and (27) it follows that, in this case, the reflection coefficients are equal

|r 2| ≡ |r+−|2 = |r−+|2 = |BN |2
|DN |2 , εm = 0, m = 1, 2, . . . , N. (29)

Finally, by inserting (8) and (23) in (19), we obtain the explicit form of the transfer matrix
of the disordered section to first order:

Q̂ =
(

AN BN

CN DN

)
+

(
Q1

11 Q1
12

Q1
21 Q1

22

)
, (30)
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where

Q1
11 = i

N∑
m=1

bm(Am−1 − Bm−1)(d+ AN−m + d−CN−m), (31)

Q1
22 = i

N∑
m=1

bm(Cm−1 − Dm−1)(d+BN−m + d−DN−m), (32)

Q1
12 = i

N∑
m=1

bm(Am−1 − Bm−1)(d+BN−m + d−DN−m), (33)

Q1
21 = i

N∑
m=1

bm(Cm−1 − Dm−1)(d+ AN−m + d−CN−m). (34)

The lowest-order effect of the disorder in the mean transmission and reflection coefficients is
obtained by expanding (15) and (17) to second order in the disorder, using (30) and noting
that the first-order averages vanish. However, in the case of the reflection coefficients, which
are asymptotically independent of length in the absence of disorder [12, 13], it is apt to focus
on the simpler averages 〈ln |r±∓|2〉. On the other hand, the study of the mean logarithm of the
transmission coefficient is of special interest, since it is related asymptotically to the localization
length

1

ξ±
= − lim

N→∞
〈ln |t±±|2〉

2N
, (35)

which is a self-averaging quantity in the absence of absorption or gain [19]. From (15), (17)
and (30), we obtain successively for the quantities of interest, to second order in the disorder,

〈ln |t|2〉 = (−lnDN + c.c.) + 1

2

( 〈(Q1
22)

2〉
D2

N

+ c.c.

)
, (36)

〈ln |r+−|2〉 =
(

ln
BN

DN
+ c.c.

)
− 1

2

[(〈(
Q1

12

BN

)2
〉

−
〈(

Q1
22

DN

)2
〉)

+ c.c.

]
, (37)

〈ln |r−+|2〉 =
(

ln
CN

DN
+ c.c.

)
− 1

2

[(〈(
Q1

21

CN

)2
〉

−
〈(

Q1
22

DN

)2
〉)

+ c.c.

]
. (38)

We close this section by demonstrating the equivalence of our results for the transmission
and reflection coefficients for the perfect absorbing or amplifying system (εm = 0) and the
corresponding results obtained earlier by Datta [12] at the band centre. For this purpose, we
identify the parameters eiq and e−iq defined above respectively with the quantities ie−ξ and −ieξ

involving the parameter ξ introduced by Datta via the substitution sinh ξ = η

2 . By transforming
equation (5) of [12] for |t|2 for even N in terms of the variable q , we get

|t|2 = sin2 q

(−i sin Nq + sin q cos Nq)2
, (39)

which coincides with the expression obtained by substituting (25) for k = π/2 and m = N
in the definition (17) of |t−−|. Similarly, the transformation of equation (6) of [12] for odd N
again yields (39), obtained from (17) and (25) above. The equations (7) and (8) of Datta [12]
for the reflection coefficient |r |2 for even and odd N , respectively, reduce similarly to the
corresponding expressions obtained from (25) to (26) and (29). Clearly, the advantage of the
present treatment is that it condenses distinct expressions for even and odd N in Datta’s analysis
into a single expression for any one of the amplitudes coefficients in (15), (17). This is clearly
useful, particularly for handling the more cumbersome general expressions for the effect of
weak disorder.
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3. Detailed results for E = 0

For simplicity, and as in most previous work for the tight-binding model [11–13], we restrict
the analytical calculations and results in this section to the band centre, E = 0(k = π/2). At
the band centre, the pure system transfer matrix elements (24)–(27) take the simple forms

Am = u+eiqm − u−e−iqm, (40)

Dm = −u−eiqm + u+e−iqm , (41)

Bm = Cm = v(eiqm − e−iqm), m = 1, 2, . . . , N, (42)

where

u± = 1

2

(
1√

1 + b2
± 1

)
, v = b

2
√

1 + b2
, (43)

e±iq = (±i)(
√

1 + b2 ∓ b). (44)

For the pure tight-binding system with absorption or gain (εm = 0, m = 1, 2 . . . N), the
transmittances and reflectances, for both directions of incidence, are given exactly for any band
energy E and for any length L = N by substituting the closed expressions (24)–(27) for the
transfer matrix elements into the definitions (15) and (17). Exact results for |t|2 and |r |2 for the
perfect system with absorption or gain, for E = 0, have been discussed by Datta [12], and more
extensive numerical results that include the additional effect of a weak disorder on the averaged
logarithmic transmittance have been presented by Jiang and Soukoulis [13]. Special attention
has been paid in [12, 13] to the domain of intermediate lengths (in particular, the critical length
Lc) where the transmittance of an amplifying system changes from an initial growth at short
lengths to an exponential decay at long lengths.

In the following, we discuss detailed results for transmittance and reflectance in the
framework of the general analytic treatment for weak disorder in section 2. We shall consider
successively the short- and the long-length domains defined below. Our consistent treatment of
the effect of weak disorder in the framework of an exact analysis of absorption or gain at zeroth
order leads to the identification of the important effects induced by absorption or amplification
in the statistics of wave transport.

3.1. Short lengths

For a fixed magnitude of the absorption/amplification parameter b, the short-length domain is
defined by

N |b| � 1, (45)

or, equivalently, L � l0, where l0 = 1/b for b > 0 is the absorption length (in units of
a) and l0 = −1/b for b < 0 is the amplification length. We wish to obtain the logarithmic
transmittance in the limit (45), which determines the short-length localization length. For this
purpose, we use the following approximations of (40)–(42) valid to lowest order, for small |b|
and small m|b|:

Am = im(1 − mb), (46)

Dm = (−i)m(1 + mb), (47)

Bm = Cm = b

2
(im + (−i)m). (48)

Note that these expressions would not be sufficient for discussing the reflection coefficients
whose explicit forms differ for even and odd N and require the inclusion of higher orders in
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ma ≡ m for Bm and Cm . For the sake of brievety, we omit discussing the short-length reflection
coefficients in more detail. We substitute (46)–(48) in the expression (32) for E = 0, which we
then insert in (36). After averaging over the disorder, using (18), and performing the remaining
geometric sums over sites, we obtain the following final results:

〈ln |t|2〉 = −2bN − ε2
0

4
(1 − 4b)N + O(b2 N2). (49)

The short-length localization length obtained from (35) and (49), namely

1

ξ
= b + ε2

0

8
(1 − 4b), (50)

yields
1

ξ
= 1

l0
+ 1

ξ0
− 4

ξ0l0
, (51)

for absorption, and
1

ξ
= − 1

l0
+ 1

ξ0
+ 4

ξ0l0
, (52)

for amplification, where

ξ0 = 8

ε2
0

. (53)

Note that (53) is the exact perturbation expression (for E = 0) of the localization length
for weak disorder, for b = 0. Indeed it coincides with the well-known exact result, ξ0 =
96W−2 sin2 k, obtained by Thouless [20], if the variance W 2/12 of the rectangular distribution
of width W of site energies in [20] is replaced by the gaussian mean square ε2

0. The first
two terms in (51)–(52) agree with the form of the short-length localization lengths derived
previously from invariant imbedding [4, 5, 10].

Finally, it is useful to clarify the general meaning of short- and long-length localization
lengths in the framework of our weak disorder analysis. We recall that the perturbation
treatment of disorder in section 2 is valid for

Nε2
0 � 1. (54)

This implies, in particular, that the localization length (53) is valid for values ε2
0 → 0 such

that the limit (54) embraces asymptotically large N , for which the localization length is defined
in (35). Similarly, the short-length localization length (50) in the presence of absorption or gain
is a true localization length only if it corresponds to the limit of asymptotically large N in (35).
Thus, if |b| < ε2

0, this limit is obtained for |b| → 0 (since N |b| < Nε2
0 � 1) while, if |b| > ε2

0,
it is obtained by letting ε2

0 → 0. Now, for |b| < ε2
0, (54) automatically implies (45), in which

case the short-length expressions (51) and (52) give the true localization lengths. On the other
hand, for |b| > ε2

0, two possibilities exist for the localization lengths:

• if, for asymptotic lengths obeying (54) (ε2
0 → 0), one also has N |b| � 1, then the

localization lengths are clearly given by the ‘short-length’ expressions (51) and (52). This
happens for values |b| � ε2

0 sufficiently close to ε2
0.

• if, for asymptotic lengths (54), the long-length condition

N |b| � 1, (55)

is fulfilled, then the localization lengths are given by the equations (64a), (64b) and their
limiting forms (66a), (66b) and (68a), (68b) in section 3.2 below. This situation exists for
|b|-values sufficiently larger than ε2

0.
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3.2. Long lengths

The transfer matrix elements (40)–(42) of a perfect system depend on the imaginary
exponentials e±iq N , which for |b| � 1 are given by

e±iq N = (±i)N e∓N(b+ b3

3 +···), (56)

where eiq N grows exponentially for b < 0 (amplification) and e−iq N grows for b > 0
(absorption) in the long-length regime, N � |b|−1 (55). We first discuss the detailed
form of the logarithmic transmission coefficient, ln |t|2 = ln t + c.c., and of the reflection
coefficient |r±∓|2 given by (17), (15) and (30)–(34) in terms of the transfer matrix elements
AN , BN , CN , DN in (40)–(42). Retaining only the leading exponential terms at long lengths
for absorption and amplification, respectively, we obtain successively

ln |t|2 = −2

∣∣∣∣
(

b + b3

3

)∣∣∣∣ N + O(N−1), (57)

for both signs of b, and

|r+−|2 = |r−+|2  b2

4
, b > 0, (58)

|r+−|2 = |r−+|2  4

b2
, b < 0. (59)

The main feature of these results is that ln |t|2 is decreasing at large L for amplification as well
as for absorption, in agreement with previous studies [6, 9, 11–13].

Next, we consider the effect of weak disorder at E = 0 in the mean logarithmic transport
coefficients (36)–(38) involving zeroth- and first-order transfer matrix elements defined in (40)–
(42) and (31)–(34). Using (18), the averages of the various quadratic forms in first-order
transfer matrix elements in (36)–(38) reduce to simple sums over lattice sites m of the products
of two terms of the form Mm−1−Nm−1 corresponding to the site m−1 multiplied by the product
of two terms of the form PN−m − RN−m corresponding to the site N − m (with M, N, P, R
representing elements, distinct or not, of the set of transfer matrix elements A, B, C, D of the
pure system). Using (40)–(42), we approximate the mth term in a given sum by the contribution
that is independent of m, which yields the leading effect proportional to N for any of the sums
involved (the contributions ignored in this approximation are readily shown to be of relative
order 1

N ). For the averages of products of first-order transfer matrix elements entering into (36)–
(38), we thus obtain the following results valid at E = 0, for any sign of b:〈(

Q1
22

)2
〉
= Nε2

0

4

[
(u− + v)2eiq(N−1) + [(u+ + v)2e−iq(N−1)

]2
, (60)

〈(
Q1

12

)2
〉
= Nε2

0

4

[
(u+ − v)(u− + v)eiq(N−1) + [(u+ + v)(u− − v)e−iq(N−1)

]2
, (61)〈(

Q1
21

)2
〉
= 〈(Q1

12

)2〉. (62)

From (62) and (37) and (38), it follows that

〈ln |r+−|2〉 = 〈ln |r−+|2〉 ≡ 〈ln |r |2〉, (63)

for both signs of b.
Next, we insert (60)–(62), together with (41) and (42), in (35)–(38) and simplify the

resulting expressions by retaining in each one of them only the leading exponential terms for
N |b| � 1, successively for b > 0 and b < 0. In this way, we obtain the following exact
expressions valid for arbitrary |b| larger than ε2

0 and such that N |b| � 1:

1

ξ
= 1

2N
ln |e−iq N |2 − ε2

0

8

(u+ + v)4

u2+
e2iq, (64a)
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〈ln |r |2〉 = ln

(
v

u+

)2

− ε2
0 N

4
(u+ + v)2

[
(u− − v)2

v2
+ (u+ + v)2

u2+

]
e2iq, b > 0; (65a)

1

ξ
= 1

2N
ln |eiq N |2 − ε2

0

8

(u− + v)4

u2−
e−2iq , (64b)

〈ln |r |2〉 = ln

(
v

u−

)2

− ε2
0 N

4
(u− + v)2

[
(u+ − v)2

v2
+ (u− + v)2

u2−

]
e−2iq, b < 0. (65b)

For weak absorption/amplification |b| � 1 (with, however, N |b| � 1) we expand (64a),
(65a) and (64b), (65b) in powers of b, using (43), (44) and (56). To order b2 in the effects of
the disorder, we finally obtain

1

ξ
= b + b3

3
+ ε2

0

8
(1 − b2), (66a)

〈ln |r |2〉 = ln

(
b2

4

)
− b2

2
+ ε2

0b2

2
N, b > 0; (67a)

1

ξ
= −

(
b + b3

3

)
+ ε2

0

8
(1 − b2), (66b)

〈ln |r |2〉 = ln

(
4

b2

)
+ b2

2
, b < 0. (67b)

On the other hand, for strong absorption/amplification, |b| � 1, we obtain successively
from (64a), (65a) and (64b), (65b), to the orders indicated, using (44),

1

ξ
= −ln(2b) − 1

4b2
+ ε2

0

8b2
, (68a)

〈ln |r |2〉 = −2

b

(
1 + 1

6b2

)
+ ε2

0 N

2b2

(
1 − 1

|b|
)

, b > 0; (69a)

1

ξ
= ln(2|b|) + 1

4b2
+ ε2

0

8b2
; (68b)

〈ln |r |2〉 = 2

b

(
1 − 1

3b2

)
+ ε2

0 N

2b2

(
1 + 1

|b|
)

, b < 0, (69b)

using the expansions of (43) and (44) in powers if 1
|b| .

Our detailed results (66a), (66b) and (68a), (68b) for localization lengths and (67a), (67b)
and (69a), (69b) for logarithmic reflection coefficients display remarkable new features related
to the effects induced by absorption/amplification in statistical averages over the disorder.
We recall that our results are valid at asymptotic lengths for values |b| > ε2

0, but not too
close to ε2

0 (see the discussions in section 3.1 above). In the absence of induced statistical
effects, the results for inverse localization lengths coincide with the previously known results
(1), (3) [6, 9]. On the other hand, in the absence of disorder, the results for the localization
length (transmission coefficient) and for the reflection coefficient coincide with the exact results
obtained by Datta [12]. In particular, in the absence of disorder, the reflection coefficient is
asymptotically constant for N → ∞ [12, 13].

Now, concerning the statistical effects induced by absorption/amplification in the inverse
localization lengths, our results (66a), (66b) and (68a), (68b) lead to the following conclusions:
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(1) the effects are identical for absorption and for amplification, for weak as well as for strong
absorption/amplification;

(2) the statistical effect induced by absorption/amplification increases the localization length
for weak absorption/amplification;

(3) localization by disorder is destroyed in the presence of sufficiently strong absorp-
tion/amplification.

On the other hand, our results in (67a), (67b) and (69a), (69b) for the statistical effects
induced by absorption/amplification in the reflection coefficient reveal that:

(1) weak absorption induces weak asymptotic statistical growth of 〈|r |2〉, while corresponding
weak amplification leads to no statistical effect;

(2) for large absorption/amplification parameters |b|, absorption and amplification induce
identical weak statistical growth terms (to leading order in |b|−2) in 〈|r |2〉.

4. Concluding remarks

The main results of this paper are summarized in the analytical expressions (51) and (52), and
(66a), (66b)–(69a), (69b) for inverse localization lengths and logarithmic reflection coefficients
in short and long random tight-binding systems with absorption or gain. These results are
discussed in detail in the main text. Our analysis in section 2 is valid for Nε2

0 � 1, which
characterizes the weak localization regime identified more generally by the limit L � ξ0.
It would be interesting in future work to study the effect of absorption or amplification in
the strong localization (or localized) regime L � ξ0 for weak disorder. Of special interest
would be the study of the additional effects associated with anomalies in ξ0 existing at special
energies, in particular at the band centre [21]. The study of transmission and reflection in the
localized regime requires a more involved treatment of the disorder, respecting, in particular,
the asymptotic unitarity limit of the reflection coefficient in the absence of absorption or gain.
A simple analytic treatment of statistical properties of the transmittance in the localized regime
in the absence of absorption has been discussed recently in [22].

We close with brief remarks on the respective roles of different symmetries of the transfer
matrix (or of the lack of them) for the disordered tight-binding system with absorption or gain
studied above. In section 2, a central role is played by the transfer matrix Q̂n of an elementary
disordered segment enclosing just one site n. Q̂n obeys the property

det Q̂n = 1, (70)

which leads to the relations

|t++
n |2 = |t−−

n |2, |r+−
n |2 = |r−+

n |2, (71)

for the reflection and transmission coefficients for waves incident from the left and from the
right, respectively. As shown in section 2, (70) implies that det Q̂ = 1, which in turn leads to
the identity of the transmission coefficients |t++|2 and |t−−|2 (equation (17)) for a system of
N sites. Now, (71) may be viewed simply as reflecting the symmetry of the piecewise defined
solutions of the Schrödinger equation for plane waves incident from the right and from the
left, respectively, in a single-site random segment. This finally shows that the transfer matrix
Q̂ embodies the basic left–right symmetry of equation (2), via equation (16), which leads to
the properties 〈|t++|2〉 = 〈|t−−|2〉 ≡ 〈|t|2〉, 〈|r+−|2〉 = 〈|r−+|2〉 ≡ 〈|r |2〉 for the observable
transmission and reflection coefficients.
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In the absence of absorption or gain, the disordered system (2) possesses a further well-
known symmetry, namely time-reversal symmetry. This symmetry implies that the 2×2 transfer
matrix X̂ satisfies the condition

X̂∗ = σ X̂σ, σ =
(

0 1
1 0

)
. (72)

This symmetry is broken when absorption or gain is present as follows, for example, from the
transfer matrix (23) for the pure system. Indeed, for E = 0, (72) would require that

B∗
N = CN and A∗

N = DN , (73)

which is not the case for the elements (40)–(42). Now it is readily seen that the lack of time-
reversal symmetry, as shown by the violation of (73), is related to a physical fact, namely the
absence of current conservation, which means that |r |2 + |t|2 �= 1. Indeed, from (17) and (29)
we have, in the present case,

|r |2 + |t|2 = 1 + |BN |2
|DN |2 �= 1, (74)

as seen from (28), since AN �= D∗
N and CN �= B∗

N . Note also a further related consequence
of the lack of time-reversal symmetry of the perfectly absorbing or amplifying systems: this
is the violation of the duality relation for the scattering matrix derived by Paaschens et al [9].
Violation of the duality relation of [9] for the S-matrix is easily demonstrated by substituting the
transfer matrix elements (41)–(43) in equations (14) and (15) for the reflection and transmission
amplitude coefficients.
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